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ABSTRACT 
The  expectations of the  average  number of nucleotide  differences  per  site (x), the  proportion of 

segregating  site (s) , the  minimum  number of mutations  per site ( s * )  and some other  quantities were 
derived under  the  finite site  models  with and  without  rate  variation  among sites, where the  finite  site 
models  include  Jukes  and  Cantor’s  model,  the  equal-input  model  and  Kimura’s  model. As a model of 
rate  variation,  the  gamma  distribution was used.  The  results  indicate  that if distribution  parameter a is 
small, the effect of rate  variation  on  these  quantities  are  substantial, so that  the  estimates of 6 based on 
the  infinite site model  are  substantially  underestimated,  where 6 = 4Nv, N is the effective  population 
size and  vis  the  mutation  rate  per  site  per  generation. New methods for estimating 6 are also presented, 
which are based  on  the  finite site models with and  without  rate  variation.  Using  these  methods,  underesti- 
mation  can  be  corrected. 

T HE amount of DNA polymorphism maintained  in 
a  population can be estimated from  the average 

number of  painvise nucleotide differences per site (lr ) 
or from  the  proportion of segregating site ( s )  among 
a sample of DNA sequences. When the  population is 
panmictic and  at equilibrium and when mutations are 
selectively neutral, KIMURA (1969)  and WATTERSON 
( 1975) showed by using the infinite site model  that  the 
expectations of lr and s are given by 

E ( T )  = 8 and E ( s )  = a l ( n ) 8 ,  (1) 

where 8 = 4Nv, N is the effective population size, u is 
the  neutral  mutation  rate  per site per  generation,  and 

n- l  1 

j=l 2 
a l ( n )  = c 7 .  ( 2 )  

These  equations suggest that 0 can be estimated by 

8 = lr, (3a) 

e = S / a l ( n ) .  (3b) 

The infinite site model assumes that  at most one muta- 
tion occurs  in  each site. However, this is not  the case 
since more  than  one mutation can occur in each site. 
This  means  that ( 3 )  might give a biased estimate of 8. 

Recently, ROGERS ( 1992)  and BERTORELLE and SLAT- 
KIN ( 1995) have examined  the  properties of 7r and S by 
assuming that  each site can have two possible states and 
that  the  neutral  mutation  rate varies among sites, and 
obtained  the following conclusion: When 8 is not small 
and when the  neutral  mutation  rate vanes among sites, 
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( 3 )  gives an underestimate of 8 although  the  degree 
of underestimation  depends on  the value  of 8 and  the 
strength of rate variation. The assumption that each 
site can have  only two possible states, however, is not 
correct since each site can have four nucleotides (A, 
G, C, and  T) . In this paper  I will present the properties 
of lr and s by using finite site models with four possible 
nucleotides per site, which are  more  general  than  the 
model used by ROGERS (1992)  and BERTORELLE and 
SLATKIN ( 1995) . If a site has three (or  four) nucleo- 
tides, we know that  at least two (or  three) mutations 
occurred in this site. Thus,  the  minimum  number of 
mutations is defined as the  number of nucleotides mi- 
nus one,  and I will present  the  property of the mini- 
mum number of mutations  per site ( s * ) .  I will also 
develop new methods  for estimating 8, based on  the 
finite site models with and without rate variation. 

THEORY 

In this paper we assume that  the  population is pan- 
mictic and  at equilibrium and  that  the  population size 
( N )  is constant. We also assume that  mutations  are 
selectively neutral ( k M U R A  1968a, 1983) . 

Jukes  and Cantor’s model of mutation  without  rate 
variation: First, we consider  the case where the  pattern 
of mutation follows JUKES and CANTOR’S ( 1969)  model. 
Namely, we assume that  in  each site the  neutral muta- 
tion rate is the same among  different nucleotides. De- 
note  the mutation  rate  per  nucleotide site per  genera- 
tion by u and  the relative frequency of nucleotide i in 
a  particular site in  the  population by xi (A, G, C, and T 
are  denoted by nucleotides 1 ,2 ,  3, and 4, respectively) . 
Then,  the probability distribution of x, is  given by 
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TABLE 1 

E(.rr), E(s) /al(n)  and E(s*)/a,(n) under Jukes and  Cantor's model of mutation  without  rate variation 

E(s)/al(n) 

8 E(.rr) n = 20 n = 50 n = 100 n = 200 

0.005 0.0050 0.0050 0.0049 0.0049 0.0049 
0.01 0.0099 0.0098 0.0098 0.0097 0.0097 
0.02 0.0195 0.0192 0.0190 0.0189 0.0188 
0.05 0.0469 0.0451 0.0442 0.0436 0.0429 
0.1 0.0882 0.0817 0.0788 0.0766 0.0744 

E(s*)/al(n) 

n = 20 n = 50 n = 100 n = 200 

0.0050 0.0050 0.0050 0.0050 
0.0099 0.0099 0.0099 0.0099 
0.0196 0.0195 0.0195 0.0195 
0.0474 0.0472 0.0471 0.0469 
0.0900 0.0895 0.0890 0.0883 

E(.rr), E ( s ) / a l (  n) and E(s*)/ul (n)  were  obtained  from  Equations 8, 6 and 15, respectively. 

( KIMURA 1968b) . Suppose now that n DNA sequences 
are randomly sampled from the  population. Using the 
Ewens sampling theory ( EWENS 1972), the probability 
(p, ) that  a particular site  in the sample is exclusively 
occupied by nucleotide i is  given by 

Then, the expectation of s is  given  by 
4 

E ( s )  = 1 - pi = 1 - 4pi, (6)  
i= 1 

which is approximately given by 

where cl ( n )  is  given  by cl ( n )  = 4al ( n )  / 3  - 5% ( n )  / 
{ 3 a l ( n ) ] ,  al(n) isgiven by ( 2 )  and % ( n )  isgiven by 

r 

Note that al ( n )  = - Si2' /  Si" and @ (  n)  = 
Si3' / Si", where S;' is the Stirling number of the first 
kind. 

The expectation of ..- can  be  obtained by substituting 
n = 2 into ( 6 ) ,  and we have 

e 
1 + 4e/3  ' 

E(. . - )  = 

which agrees with Equation 15 of TAJIMA (1983). Nu- 
merical examples of E (  ..-) and E (  s) / al ( n )  are given 
in Table 1 since ..- and s/ al ( n )  are used to estimate 6 
under  the infinite site model. This table shows that ..- 
and s/ al ( n )  give underestimates of 8, that  the underes- 
timation is substantial only when 0 is large, and that 
the  degree of underestimation is larger for s/ al ( n )  
than for x. It is  also noted  that  the bias of S /  al ( n )  
increases as the sample size ( n)  increases. This is be- 

cause, as n increases, the probability that  more  than 
one mutation occurred in each site among  a sample of 
n sequences also increases. Equations 8 and 6b suggest 
that 0 can be estimated by 

e =  ..- 
( 9 )  1 - 4..-/3 ' 

e =  S 
(10) 

We can estimate 6 from the minimum number of 
mutations per site ( s * )  . Let p, be the probability that 
a particular site is exclusively occupied by nucleotides 
i and/  or j ,  and pyk be  the probability that  a particular 
site is exclusively occupied by nucleotides i ,  j and/or k .  
Using the same method as  we obtained (5) , we obtain 

(11) 

a l ( n )  - c1(n)s 

r ( 4 e / 3 ) r ( z e / 3  + n )  
r ( 4 8 / 3  + n ) r ( z e / 3 )  ' pij = 

Denote the probability that  a particular site is occupied 
by i types of nucleotide in a sample of n DNA sequences 
by qt and  the estimate of q, by g j .  For example, if we 
have the following five  DNA sequences with a length 
of 20 nucleotides where dash ( - )  indicates the same 
nucleotide as  in the first sequence listed, we have ql = 
12 

/20, 42  = 5/20, 43 = '/20 and 9 4  = '/20. 

It is clear from the definitions that we  have 
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When a site is occupied by i types  of nucleotide in the 
sample, it is certain  that at least i - 1 mutations oc- 
curred in this site. Therefore,  the minimum number of 
mutations per site can be estimated by 

s* = & + 2@3 + 344. (14) 

In  the above example, we have s* = 5/20 + 2 X 2/20 + 
3 X 1/20 = 12/20 = 0.6. It  should  be  noted  that s* is the 
same as sin the infinite site model, but usually different 
in the finite site model since s = @ + + q4. From 
(13) the  expectation of s* can be given by 

E ( s * )  = % + 2qs + 3q4 = 3 - 4ptjk, (15) 

which  is approximately given by 

where@(%) =4al(n)/3-7~(n)/{3al(n)).Numer- 
ical examples of E ( s* ) / al ( n) are also  shown in Table 
1, which indicate that s*/  a1 (n) gives  slightly better 
estimates of 0 than  does s/ al (n) . Equation 15a sug- 
gests that 0 can be estimated by 

S* e =  (16) 
a l ( n )  - c z ( n ) s * .  

Under  the infinite site model, the  expected  number 
of nucleotides whose frequency is i/ n per site is  given 
by 

fR(i)  = 0 7 + - ( t  n!i) 

( TAJIMA 1989a), which can be used to identify the pat- 
tern of DNA polymorphism. Under  the  present model, 
it is  given by 

which can be approximately given by 

fn( i )  = 
0 { l / i +   l / ( n -  2 ) )  

1 + { 4 a l ( n ) / 3 -   a l ( n -  i )  - a l ( i ) / 3 ] 0 '  

(18a) 

A comparison between ( 17) and ( 18) indicates that 
fn ( i) under the  present model is not very different from 
that of the infinite site model even if 8 is quite large 
except when i/ n is close to 1. 

Jukes and Cantor's model of mutation with rate varia- 
tion: It has been shown by several authors (e.g., GOLD 
ING 1983; WAKELEY 1993)  that  neutral  mutation rates 
are approximately gamma distributed among sites. 

TABLE 2 

E(.sr), E(s) /a , (n)  and E(s*)/a,(n) under Jukes and  Cantor's 
model of mutation with rate variation 

0.005 0.0047 
0.01 0.0087 
0.02 0.0155 

0.005 0.0048 
0.01 0.0093 
0.02 0.0172 

0.005 0.0049 
0.01 0.0096 
0.02 0.0185 

0.005 0.0049 
0.01 0.0097 
0.02 0.0190 

(A) (Y = 0.1 

0.0043 
0.0076 
0.0123 

(B) a = 0.2 

0.0046 
0.0085 
0.0149 

(C) (Y = 0.5 

0.0048 
0.0092 
0.0171 

(D) (Y = 1 

0.0049 
0.0095 
0.0180 

0.0047 
0.0088 
0.0157 

0.0048 
0.0093 
0.01 74 

0.0049 
0.0096 
0.0186 

0.0049 
0.0098 
0.0191 

E(.rr), E ( s ) / q ( n )  and E(s*)/a,(n)  were obtained from for- 
mulas 22, 21 and 23, respectively, where n = 100 is assumed. 

Here, we assume that 0 follows the following gamma 
distribution: 

where a = { E ( 0 ) 1 2 / V ( 0 ) ,  0 = a / E ( 0 )  and E ( 0 )  is 
the expectation of 0, i.e., E (  0 )  = Bg( 0 )  d8. Note that 
the smaller (Y is, more  the  mutation  rate varies among 
sites. Then, using ( 6 ) ,  the expectation of the  propor- 
tion of segregating site is  given by 

E ( s )  = [ (1 - 4P*)g(d)d8.  (20) 

Using ( 6a) , E (  s) is approximately given by 

Substituting n = 2 into  (21 ) , we have 

E ( T )  = E ( 0 )  
1 + 4(a + l ) E ( 0 ) / ( 3 a )  (22)  

In the same way, the expectation of the minimum num- 
ber of mutations per site can be  obtained, which  is 
approximately given by 

Numerical examples are shown  in Table 2, where E(  T )  , 
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E (  s) / al ( n) and E ( s *  ) / al ( n) are given for n = 100. 
We can see from this table that  the effect of rate varia- 
tion is substantial when a is small (a < 1 ) even if E (  8 )  
is as small  as  0.005. The effect is stronger on E (  s) than 
on E(n) and E ( s * ) .  Formulas ( 2 2 ) ,  (21)  and (23) 
suggest that we can estimate 8 by 

S 
d =  (25) 

a l ( n )  - s ( n )  ( a  + l ) s / a  ' 

8 =  
S *  

a l ( n )  - s ( n )  ( a  + l ) s * / a  
f (26) 

if a is known. Although we can also estimate a from 
these formulas, the accuracy  of the estimate might be 
very  low since the variances of s and n are  too large to 
estimate an  additional  parameter ( WAITERSON  1975; 
TAJIMA 1983). 

Equal-input model of mutation  without rate varia- 
tion: Here, we assume that  the mutation rate  to nucleo- 
tide i from any  of the  other  three nucleotides is the 
same (FELSENSTEIN 1981;  TAJIMA and NEI 1982). 
Namely, when uli is the  mutation  rate  per  generation 
from nucleotide j to nucleotide i, we assume ult = ui 
for j f i. Under this model,  the mutation rate per 
generation from nucleotide i to any  of the  other  three 
nucleotides is XJ+iuj and  the  expected frequency of nu- 
cleotide i is  given by 

(27) 

( TAJIMA and NEI 1984).  Then, the  expected  mutation 
rate per site per  generation can be given by 

4 4 

u = yj uq = hl uj, (28) 
z=1 ~ # i  i= 1 

where hl = 1 - X$=,yf. Following KIMURA (1968b), the 
probability distribution of the frequency of nucleotide 
i, xi, is given by 

x (1 - ( 1 - Y z ) O / + 1  YP/+l Xi (29) 

since 4Nut = y i d / h l  and  4N Xl++uj = (1 - y i ) O / h l ,  
where 8 = 47%. Using the Ewens sampling theory 
( EWENS 19'72),  the probability (pi ) that  a particular 
site  in the sample is  exclusively occupied by nucleotide 
i is given by 

Then, the expectation of s is  given by 

TABLE 3 

E(m), E(s) /al(n)  and E(s*)/a,(n) under  the  equal-input 
model of mutation  without  rate  variation 

I 9  E(.rr) E ( s ) /a1 (n )  W s * ) / a , ( n )  

(A) Moderately unequal nucleotide  frequencies 

0.005 0.0050 0.0049 0.0050 
0.01 0.0099 0.0097 0.0099 
0.02 0.0194 0.0189 0.0194 
0.05 0.0467 0.0434 0.0466 
0.1 0.0875 0.0761 0.0873 

(B) Extremely unequal nucleotide  frequencies 

0.005 0.0049 0.0049 0.0049 
0.01 0.0098 0.0096 0.0097 
0.02 0.0192 0.0186 0.0190 
0.05 0.0453 0.0421 0.0442 
0.1 0.0830 0.0723 0.0793 

E(.rr), E ( s ) / a l ( n )  and E(s*) /a l (n)  were obtained  from 
Equations 32, 31 and 35, respectively, where n = 100 is as- 
sumed. Moderately unequal nucleotide  frequencies assume 
yl = O.l,% = 0.3, y3 = 0.4 and y4 = 0.2, and extremely unequal 
nucleotide  frequencies assume yl = 0.025, y2 = 0.225, y3 = 
0.675 and p = 0.075. 

4 

E ( s )  = 1 - c pz ,  (31) 
i= 1 

which is approximately given by 

where h2 = 1 - Xf=lyS. On  the  other  hand,  the expecta- 
tion of n is given by 

8 
E ( n )  = 

1 + d / h l .  

(34) 
Then,  the expectation of s* is  given  by 

which is approximately given by 

Numerical examples are shown in Table 3, where n = 
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100 is assumed. A comparison between Tables 1 and 3 
shows that E (  7 r )  and E (  s) under this model are  not 
very different from those under Jukes and Cantor’s 
model even when the  nucleotide frequency deviates 
substantially from equality, whereas E (  s*) under this 
model is quite  different from that under Jukes and Can- 
tor’s model when the nucleotide frequency deviates 
substantially from equality. Using (31a), ( 3 2 )  and 
(35a), we can estimate 8 by 

In these equations, h, and & can be estimated by h, = 
1 - E jp and j& = 1 - E 9: , where j t  is the observed 
frequency of nucleotide i. 

Under this model the  expected  number of nucleo- 
tides whose frequency is i/ n per site is  given by 

(39) 

Equal-input model of mutation with  rate  varia- 
tion: When 8 follows the gamma distribution ( 19) , the 
expectations of x, s and s* are approximately given by 

( 4 2 )  

Numerical examples are shown in Table 4. It can be 
seen from this table that  the effect of rate variation is 
substantial when a is small ( a  < 1 ) even if E (8)  is  as 
small  as 0.005 and that  the effect is stronger  on E (  s) 

than on E (  x). The above formulas suggest that, if a is 
known, 0 can be estimated by 

8 =  
7r 

(43) 
1 - ( a  + 1)7r/(h1a) ’ 

S *  

Kimura’s model of mutation without  rate  varia- 
tion: We  now assume that  the  rate of transitional muta- 
tion is different from that of transversional mutation 
( KIMURA 1980). Namely, we assume uI2 = uYl = u34 = 
u43 = cru and ~ 1 3  = u14 = uZ3 = y4 = usl = u32 = 2141 = 
~ 4 2  = ( w /  2 )  u and cr + w = 1, where uq is the mutation 
rate per site per  generation from nucleotide i to nucleo- 
tide j ,  u is the total mutation  rate  per site per genera- 
tion, cr is the  proportion of transitional mutation,  and 
w is the  proportion of transversional mutation. Unlike 
the previous models, under this model we cannot ob- 
tain the expectations of s and s* since we cannot obtain 
p, . We can, however, obtain p ,  as  follows. The mutation 
rate from A or G to C or T is 2wu, and the mutation 
rate from C or T to A or G is also 2wu. Therefore, 
p1~ ( = $44 1 is  given by 

Since the  mutation  rate  from A or C to G or T and that 
from G or T to A or C  are ( a  + w / 2 )  u,  PIS ( = P I 4  = 
p2, = h4) is  given by 

Denote the probability that  a particular site is occupied 
by ( A  and G )  or (C and T )  in a sample of n DNA 
sequences by q., and the probability of  having (A  and 
C ) ,  (A  and T ) ,  ( G  and C) or ( G  and T )  by 4.. In 
other words, g2 is divided into  the transitional part (4.) 
and  the transversional part (4.). In  the previous exam- 
ple, the estimates of q. and q. are 4/20 and respec- 
tively.  If  we denote qa and qb by 

q. and  are given by 
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TABLE 4 

E(m), E ( s ) / a ~ ( n )  and E((s*)/a,(n) under  the  equal-input  model of mutation  with  rate variation 

Moderately unequal 
nucleotide  frequencies" Extremely unequal nucleotide  frequencies" 

E ( @ )  E(-ir) E(s)/a1(n) E ( ? ) / u I ( ~ )  E(.rr) E(s ) /a , (n)  E(s*)/al(n) 

(A) (Y = 0.1 

0.005  0.0046 0.0043 0.0046  0.0045  0.0042 0.0044 
0.01  0.0086 0.0076 0.0086 0.0082 0.0071 0.0078 
0.02  0.0152 0.0122 0.0152 0.0138 0.01 11 0.0127 

(B) (Y = 0.2 

0.005 0.0048 0.0046  0.0048  0.0047  0.0045 0.0046 
0.01 0.0092 0.0085 0.0092 0.0089 0.0082 0.0086 
0.02  0.0171 0.0148 0.0170 0.0160 0.0139 0.0152 

(C) (Y = 0.5 

0.005 0.0049 0.0048 0.0049 0.0049 0.0047 0.0048 
0.01 0.0096 0.0092 0.0096 0.0094 0.0090 0.0093 
0.02 0.0184 0.0170 0.0184 0.0178 0.0164 0.0173 

(D) a = 1 

0.005 0.0049 0.0049 0.0049 0.0049 0.0048 0.0049 
0.01 0.0097 0.0094 0.0097 0.0096 0.0093 0.0095 
0.02 0.0189 0.0179 0.0189 0.0185 0.0174 0.0181 

E(.rr), E ( s ) / a , ( n )  and E ( s * ) / a l ( n )  were obtained  from formulas 40, 41 and 42, respectively, where n = 100 

a See Table 3. 
is assumed. 

4. = 1 - 2p12 and q b  = 1 - 2p13, (49) 

which are approximately given by 

4. - a1 ( n )  we ( U  + 4 2 1 0  
1 + a ( n ) w e  1 + c 3 ( n )  (a + w / 2 ) e 7  

and 4 0  = 

(50) 

where g ( n )  = 2al ( n )  - 3a, ( n )  / al ( n )  . These formu- 
las  suggest that 8, w and a can be estimated by 

e =  4 + i b  , (51a) 

( j =  4 
2{al(n)  - c3(n)421 a l ( n )  - C 3 ( n ) g b  

1al(n) - C3(n)(i,Ie 
and 8 = 1 - G. (51b) 

Let us  now denote  the average numbers of painvise 
transitional and transversional differences per nucleo- 
tide site by ns  and T,, respectively. When n = 2, we have 
qa = E (  x,) and q b  = E (  T ~ )  + E (  T,,) /2  since E (  ns) = 
q,, and E ( T,) = q,,. From (49) ,  we have 

It is noted  that E ( n )  = 8/ (1 + 40/3) if there is no 
transition bias (ie., w = * / 3 ) .  Numerical examples are 
shown in Table 5, which indicate that n underestimates 
0 when 8 is  very large and that  the  amount of underesti- 
mation is the slightest when there is no transition bias. 
Equations 52a and 52b indicate that we can estimate 
8, w and u by 

e =  x, + 7FJ2 + T U  

1 - (2n, + n,) 2 ( 1  - 2n,) 
, (54a) 

Lj= T U  

(1 - 27r,)B 
and 6 = 1 - G. (54b) 

Kimura's model of mutation with rate variation: We 
again assume that 8 follows the gamma distribution 
(19) .  In  the same way as before, we can obtain the 
expectation of q. and q b ,  which are approximately given 
bY 

Therefore,  the expectation of T can be given by 
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TABLE 5 

E(m) under  Kimura’s model of mutation without  rate  variation 

e 
U W 0.005 0.01 0.02  0.05 0.1 

0.0 1 .o 0.0050 0.0099 0.0194 0.0465 0.0871 
0.1 0.9 0.0050 0.0099 0.0195 0.0467 0.0877 
0.2 0.8 0.0050 0.0099 0.0195 0.0468 0.0881 
0.3 0.7 0.0050 0.0099 0.0195 0.0469 0.0882 
0.4 0.6 0.0050 0.0099 0.0195 0.0469 0.0882 
0.5 0.5 0.0050 0.0099 0.0195 0.0468 0.0879 
0.6 0.4 0.0050 0.0099 0.0194 0.0467 0.0875 
0.7 0.3 0.0050 0.0098 0.0194 0.0465 0.0868 
0.8  0.2 0.0050 0.0098 0.0194 0.0462 0.0859 
0.9 0.1 0.0050 0.0098 0.0193 0.0459 0.0847 
1 .o 0.0 0.0050 0.0098 0.0192 0.0455 0.0833 

E(T) was obtained from Equation  53. 

1463 

E ( T , )  + E ( 7 r u ) / 2  
( a  + w/2)8 

1 + ( a  + 1) (20 + w)8/a ’ 

(57b) 

the expectation of 7r is approximately given by 

E(.rr) 

(1 + 3(a + 1)  (1  - W / 2 ) w e / a ~ ~  
(1  + 2 ( a  + l ) w 8 / a } { l  + ( a  + 1 ) ( 2  - w ) 8 / a )  

c 

(58) 

Numerical examples are shown  in Table 6, which indi- 
cate that  the effect of rate variation on 7r is substantial 
even when E (  8) is  as small  as  0.005 and that  the effect 
increases as the transition / transversion bias increases 
from a = Formulas 57a and 57b suggest that if CY 

is known, 8, w and a can be estimated by 

O =  T s  + 7 r J 2  
1 - ( a  + 1)(27rs + 7r,)/a 

+ T U  

2 ( 1  - 2 ( a  + l)7ru/a) 
9 (59a) 

Lj= T” 

(1  - 2 ( a  + l)T,/a)e 
and b =  1 - G .  (59b) 

DISCUSSION 

The infinite site model is one of the  fundamental 
models for molecular population genetics. In fact, a 
large number of important theoretical studies were 
based on this model. This model, however,  is not always 
applicable. As shown  in this paper, when the  rate of 
mutation vanes substantially among sites, the  amount 
of  DNA polymorphism estimated by using this model 
might be underestimated. For example, the  amount of 
underestimation might be substantial in the case  of the 
control region of human mitochondrial DNA. HORAI 
and coworkers examined  the 482-bp sequences in the 
control region from Africans, Europeans, Asians and 
Native Americans ( HORAI and HAYASAKA 1990; HORAI 
et al. 1991,1993). I have  analyzed the 250-bp sequences 
in hypervariable region 1, since an estimate of a is  avail- 
able in this region, i.e., 13 = 0.47 ( WAKELEY 1993). Table 
7 shows the estimates of 8, a and w obtained from the 
infinite site model, Jukes and Cantor’s model, the 
equal-input model and Kimura’s model by using n = 

q4 = 0, 9, = 0.35, j$ = 0.09, 93 = 0.37 and j4 = 0.19. It 
should be noted  that in this case 0 = 2N,v, where N’is 
the effective number of females, since mitochondrial 
DNA is haploid and maternally inherited. The results 
show that  the estimate based on the infinite site model 
is smaller than the estimates based on the  other  three 
models. In the cases of Jukes and Cantor’s model and 
the equal-input model, there  are discrepancies between 

193, & = 9 5 / ~ 5 ~  ( 4  = / * S O  and 4, = ‘ / 2 5 0 ) ,  & = 5 / ~ 5 ~ ,  
Y l  
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TABLE 6 

E(m) under  Kimura’s model of mutation  with  rate  variation 

U 

E(@ 0.0 0.2 0.4  0.6  0.8  1 .o 
(A) a = 0.1 

0.0047 
0.0087 
0.0155 

0.005 
0.01 
0.02 

0.0046 
0.0086 
0.0151 

0.0047 
0.0087 
0.0154 

0.0046 
0.0086 
0.0152 

0.0046 
0.0085 
0.0147 

0.0045 
0.0082 
0.0139 

(B) a = 0.2 

0.0048 
0.0093 
0.01 72 

0.005 
0.01 
0.02 

0.0048 
0.0092 
0.0170 

0.0048 
0.0092 
0.0172 

0.0048 
0.0092 
0.0171 

0.0048 
0.0091 
0.0167 

0.0047 
0.0089 
0.0161 

(C) a = 0.5 

0.0049 
0.0096 
0.0185 

0.005 
0.01 
0.02 

0.0049 
0.0096 
0.0184 

0.0049 
0.0096 
0.0185 

0.0049 
0.0096 
0.0184 

0.0049 
0.0095 
0.0182 

0.0049 
0.0094 
0.0179 

(D) a = 1 

0.0049 
0.0097 
0.0190 

0.005 
0.01 
0.02 

0.0049 
0.0097 
0.0189 

0.0049 
0.0097 
0.0190 

0.0049 
0.0097 
0.0189 

0.0049 
0.0097 
0.0188 

0.0049 
0.0096 
0.0185 

E(n) was obtained  from (58). 

the estimates obtained from s and s*, probably because 
these mutation models do not fit the  data. Since the 
transitional mutation rate is substantially higher  than 
transversional mutation  rate in mammalian mitochon- 
drial DNA sequences, Kimura’s model might be more 
appropriate.  It is also  shown  in the table that in the 
case of Kimura’s model the estimate of 6’ with rate varia- 
tion is quite  different from that without rate variation. 
Namely the value  with rate variation is 2.5 times larger 
than  that without rate variation. 8 = 0.2 may not be 

unreasonable, since 6’ is determined by the  recent popu- 
lation size more strongly than by the  ancient  population 
size (TAJIMA 1989b)  and since the  human  population 
might have increased (MERRIWETHER et al. 1991; ROC? 
ERS and HARPENDING 1992). 

Recently,  several methods for estimating 0, including 
Fu (1994a,b)  and KUHNER et al. (1995), have been 
proposed. Fu’s methods, however,  assume that  there is 
no rate variation among nucleotide sites, so that they 
may  give an underestimate of 6’ when the mutation rate 

TABLE 7 

Estimates of 8, u and (o in the  250-bp  hypervariable control  region of human  mitochondrial DNA 
~ 

Model 
~~ 

Measure used e 6 L3 Formula 
~ ~ 

Infinite site model S 0.0685 3b 
Jukes and Cantor’s  model 

Without rate variation S 0.0874 
S* 0.0794 

With rate variation S 0.2113 
S* 0.1017 

10 
16 
25 
26 

Equal-input  model 
Without rate variation 7 0.0880 37 

s* 0.081 1 38 
With rate variation S 0.2231  44 

sy 0.1110  45 

Without  rate variation da, q b  0.0897 0.9298 0.0702 51 
With rate variation da, d b  0.2283 0.971  1 0.0289  56 

Kimura’s model 

~ 

Data from HOW et al. (1993). In the case of rate variation, a = 0.47 was used. 
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varies among sites. Since we do  not know the effect of 
rate variation on his methods, we must be careful when 
the  rate varies among sites  substantially. On the  other 
hand, KUHNER et aL’s method can deal with rate varia- 
tion by using a  mutation  rate category approach, al- 
though this approach has not been extensively tested. 

BERTORELLE and SLATKIN ( 1995 ) clearly indicate that 
the test of neutrality proposed by TAJIMA ( 1989a) might 
not be  appropriate if the  mutation  rate varies among 
sites substantially. This is because Tajima’s D statistic is 
based on the infinite site model. FU and LI’S (1993) 
test also has the same problem. The variances of 7r and 
s and  the covariance between IT and s remain to be 
solved under  the finite site models with rate variation. If 
we know them, we  will be able to alleviate this problem. 

I thank  an  anonymous reviewer for many valuable suggestions and 
comments  for improving the presentation.  This work  was supported 
in part by a grant-in-aid from  the Ministry of Education, Science, 
Sports and Culture of Japan. 
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